Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612395

RESUMO

Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.


Assuntos
MicroRNAs , Animais , Caenorhabditis elegans/genética , Carcinogênese , Transformação Celular Neoplásica , MicroRNAs/genética , RNA Mensageiro , Humanos
2.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464009

RESUMO

SELENON-Related Myopathy (SELENON-RM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology commonly includes multiminicores or a dystrophic pattern but is often non-specific. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency causes SELENON-RM are undetermined. A hurdle is the lack of cellular and animal models that show assayable phenotypes. Here we report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression between selenon and genes involved in glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit changes in glutathione and redox homeostasis, suggesting a direct relationship with SelN function. We report changes in metabolic function abnormalities in SelN-null myotubes when compared to WT. These results suggest that SelN has functional roles during zebrafish early development and myoblast metabolism.

3.
Ther Adv Rare Dis ; 4: 26330040231181406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621556

RESUMO

Background: Due to racial, cultural, and linguistic marginalization, some populations experience disproportionate barriers to genetic testing in both clinical and research settings. It is difficult to track such disparities due to non-inclusive self-reported race and ethnicity categories within the electronic health record (EHR). Inclusion and access for all populations is critical to achieve health equity and to capture the full spectrum of rare genetic disease. Objective: We aimed to create revised race and ethnicity categories. Additionally, we identified racial and ethnic under-representation amongst three cohorts: (1) the general Boston Children's Hospital patient population (general BCH), (2) the BCH patient population that underwent clinical genomic testing (clinical sequencing), and (3) Children's Rare Disease Cohort (CRDC) research initiative participants. Design and Methods: Race and ethnicity data were collected from the EHRs of the general BCH, clinical sequencing, and CRDC cohorts. We constructed a single comprehensive set of race and ethnicity categories. EHR-based race and ethnicity variables were mapped within each cohort to the revised categories. Then, the numbers of patients within each revised race and ethnicity category were compared across cohorts. Results: There was a significantly lower percentage of Black or African American/African, non-Hispanic/non-Latine individuals in the CRDC cohort compared with the general BCH cohort, but there was no statistically significant difference between the CRDC and the clinical sequencing cohorts. There was a significantly lower percentage of multi-racial, Hispanic/Latine individuals in the CRDC cohort than the clinical sequencing cohort. White, non-Hispanic/non-Latine individuals were over-represented in the CRDC compared to the two other groups. Conclusion: We highlight underrepresentation of certain racial and ethnic populations in sequencing cohorts compared to the general hospital population. We propose a range of measures to address these disparities, to strive for equitable future precision medicine-based clinical care and for the benefit of the whole rare disease community.


Racial and ethnic representation amongst general clinics, clinics that provide genetic testing, and genomic-based research at Boston Children's Hospital Background: Individuals who identify as belonging to a race or ethnicity that has been historically excluded from mainstream cultural, political, and economic activities ('historically marginalized') experience barriers to clinical care. These barriers are further complicated for families touched by rare genetic conditions. Obstacles can present as accessibility issues (transportation, financial, linguistic), low-quality medical care, or inadequate inclusion in research. It is important to have representation within rare disease research so that the full scope of these conditions is understood, leading to better patient care for all, and for health equity. Objective: We aimed to (1) to create new and inclusive race and ethnicity categories for the electronic health record (EHR) and (2) identify differences in racial and ethnic representation amongst patients generally seen at Boston Children's Hospital (general BCH), those who received genetic testing in a clinic at Boston Children's Hospital (clinical sequencing), and participants who enrolled in the CRDC research project at Boston Children's Hospital (CRDC). Design and Methods: We combined race and ethnicity categories to make more inclusive options than existing EHR categories. Differences in race and ethnicity representation were observed when looking at the three different patient groups (general BCH, clinical sequencing, and CRDC). Results: We observed a lower percentage of individuals who self-identify as Black or African American/African, non-Hispanic/non-Latine in the genetic testing groups (both research and clinical) than in the general BCH group. Individuals who self-identify as multi-racial, Hispanic/Latine are also under-represented in the CRDC research compared to the two other groups. The highest population percentage seen in all groups was that of patients who identify as White, non-Hispanic/non-Latine. This group was over-represented in the research CRDC group compared to the two others. Conclusion: Our study found that patients who are historically marginalized are underrepresented in clinical genetic testing and genomic research studies compared to their White counterparts. In order to benefit all patients with rare genetic conditions, these differences must be addressed by improving access to specialty physicians/researchers and incorporating inclusive language in the EHR, clinics, and research protocols.

4.
J Allergy Clin Immunol Pract ; 11(11): 3391-3399.e3, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37544429

RESUMO

BACKGROUND: Debates on the allocation of medical resources during the coronavirus disease 2019 (COVID-19) pandemic revealed the need for a better understanding of immunological risk. Studies highlighted variable clinical outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in individuals with defects in both adaptive and innate immunity, suggesting additional contributions from other factors. Notably, none of these studies controlled for variables linked with social determinants of health. OBJECTIVE: To determine the contributions of determinants of health to risk of hospitalization for SARS-CoV-2 infection among individuals with inborn errors of immunodeficiencies. METHODS: This is a retrospective, single-center cohort study of 166 individuals with inborn errors of immunity, aged 2 months through 69 years, who developed SARS-CoV-2 infections from March 1, 2020, through March 31, 2022. Risks of hospitalization were assessed using a multivariable logistic regression analysis. RESULTS: The risk of SARS-CoV-2-related hospitalization was associated with underrepresented racial and ethnic populations (odds ratio [OR] 4.50; 95% confidence interval [95% CI] 1.57-13.4), a diagnosis of any genetically defined immunodeficiency (OR 3.32; 95% CI 1.24-9.43), obesity (OR 4.24; 95% CI 1.38-13.3), and neurological disease (OR 4.47; 95% CI 1.44-14.3). The COVID-19 vaccination was associated with reduced hospitalization risk (OR 0.52; 95% CI 0.31-0.81). Defects in T cell and innate immune function, immune-mediated organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization after controlling for covariates. CONCLUSIONS: The associations between race, ethnicity, and obesity with increased risk of hospitalization for SARS-CoV-2 infection indicate the importance of variables linked with social determinants of health as immunological risk factors for individuals with inborn errors of immunity.


Assuntos
COVID-19 , Doenças da Imunodeficiência Primária , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Retrospectivos , Estudos de Coortes , Vacinas contra COVID-19 , Obesidade , Hospitalização , Doenças da Imunodeficiência Primária/epidemiologia
5.
JAMA Netw Open ; 6(7): e2324380, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37471090

RESUMO

Importance: Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective: To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants: This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures: Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures: Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results: A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance: These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.


Assuntos
Epilepsia , Deficiência Intelectual , Masculino , Feminino , Humanos , Estudos de Coortes , Sequenciamento do Exoma , Deficiência Intelectual/epidemiologia , Epilepsia/diagnóstico , Epilepsia/genética , Convulsões
6.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333367

RESUMO

Background: Debates on the allocation of medical resources during the COVID-19 pandemic revealed the need for a better understanding of immunologic risk. Studies highlighted variable clinical outcomes of SARS-CoV-2 infections in individuals with defects in both adaptive and innate immunity, suggesting additional contributions from other factors. Notably, none of these studies controlled for variables linked with social determinants of health. Objective: To determine the contributions of determinants of health to risk of hospitalization for SARS-CoV-2 infection among individuals with inborn errors of immunodeficiencies. Methods: This is a retrospective, single-center cohort study of 166 individuals with inborn errors of immunity, aged two months through 69 years, who developed SARS-CoV-2 infections from March 1, 2020 through March 31, 2022. Risks of hospitalization was assessed using a multivariable logistic regression analysis. Results: The risk of SARS-CoV-2-related hospitalization was associated with underrepresented racial and ethnic populations (odds ratio [OR] 5.29; confidence interval [CI], 1.76-17.0), a diagnosis of any genetically-defined immunodeficiency (OR 4.62; CI, 1.60-14.8), use of B cell depleting therapy within one year of infection (OR 6.1; CI, 1.05-38.5), obesity (OR 3.74; CI, 1.17-12.5), and neurologic disease (OR 5.38; CI, 1.61-17.8). COVID-19 vaccination was associated with reduced hospitalization risk (OR 0.52; CI, 0.31-0.81). Defective T cell function, immune-mediated organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization after controlling for covariates. Conclusions: The associations between race, ethnicity, and obesity with increased risk of hospitalization for SARS-CoV-2 infection indicate the importance of variables linked with social determinants of health as immunologic risk factors for individuals with inborn errors of immunity. Highlights: What is already known about this topic? Outcomes of SARS-CoV-2 infections in individuals with inborn errors of immunity (IEI) are highly variable. Prior studies of patients with IEI have not controlled for race or social vulnerability. What does this article add to our knowledge ? For individuals with IEI, hospitalizations for SARS-CoV-2 were associated with race, ethnicity, obesity, and neurologic disease. Specific types of immunodeficiency, organ dysfunction, and social vulnerability were not associated with increased risk of hospitalization. How does this study impact current management guidelines? Current guidelines for the management of IEIs focus on risk conferred by genetic and cellular mechanisms. This study highlights the importance of considering variables linked with social determinants of health and common comorbidities as immunologic risk factors.

7.
Cells ; 11(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36497057

RESUMO

Organoids have been used to investigate the three-dimensional (3D) organization and function of their respective organs. These self-organizing 3D structures offer a distinct advantage over traditional two-dimensional (2D) culture techniques by creating a more physiologically relevant milieu to study complex biological systems. The goal of this study was to determine the feasibility of establishing organoids from various pediatric liver diseases and characterize the long-term evolution of cholangiocyte organoids (chol-orgs) under a single continuous culture condition. We established chol-orgs from 10 different liver conditions and characterized their multicellular organization into complex epithelial structures through budding, merging, and lumen formation. Immunofluorescent staining, electron microscopy, and single-nucleus RNA (snRNA-seq) sequencing confirmed the cholangiocytic nature of the chol-orgs. There were significant cell population differences in the transcript profiles of two-dimensional and organoid cultures based on snRNA-seq. Our study provides an approach for the generation and long-term maintenance of chol-orgs from various pediatric liver diseases under a single continuous culture condition.


Assuntos
Células Epiteliais , Organoides , Humanos , Criança
8.
J Crohns Colitis ; 16(9): 1380-1396, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35366317

RESUMO

BACKGROUND AND AIMS: Over 80 monogenic causes of very early onset inflammatory bowel disease [VEOIBD] have been identified. Prior reports of the natural history of VEOIBD have not considered monogenic disease status. The objective of this study is to describe clinical phenotypes and outcomes in a large single-centre cohort of patients with VEOIBD and universal access to whole exome sequencing [WES]. METHODS: Patients receiving IBD care at a single centre were prospectively enrolled in a longitudinal data repository starting in 2012. WES was offered with enrollment. Enrolled patients were filtered by age of diagnosis <6 years to comprise a VEOIBD cohort. Monogenic disease was identified by filtering proband variants for rare, loss-of-function, or missense variants in known VEOIBD genes inherited according to standard Mendelian inheritance patterns. RESULTS: This analysis included 216 VEOIBD patients, followed for a median of 5.8 years. Seventeen patients [7.9%] had monogenic disease. Patients with monogenic IBD were younger at diagnosis and were more likely to have Crohn's disease phenotype with higher rates of stricturing and penetrating disease and extraintestinal manifestations. Patients with monogenic disease were also more likely to experience outcomes of intensive care unit [ICU] hospitalisation, gastrostomy tube, total parenteral nutrition use, stunting at 3-year follow-up, haematopoietic stem cell transplant, and death. A total of 41 patients [19.0%] had infantile-onset disease. After controlling for monogenic disease, patients with infantile-onset IBD did not have increased risk for most severity outcomes. CONCLUSIONS: Monogenic disease is an important driver of disease severity in VEOIBD. WES is a valuable tool in prognostication and management of VEOIBD.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Idade de Início , Doença de Crohn/diagnóstico , Doença de Crohn/genética , Doença de Crohn/terapia , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/terapia , Intestinos , Fenótipo
9.
Cell Rep ; 39(4): 110729, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452593

RESUMO

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutação/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
10.
J Allergy Clin Immunol ; 150(2): 373-384, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35300986

RESUMO

BACKGROUND: Allergic skin inflammation elicited in mice by epicutaneous (EC) sensitization with antigen shares characteristics with human atopic dermatitis (AD). OBJECTIVE: We characterized gene expression by single cells in mouse skin undergoing antigen-driven allergic inflammation and compared the results with findings in AD skin lesions. METHODS: Mice were EC sensitized by application of ovalbumin (OVA) or saline to tape-stripped skin. Single-cell RNA sequencing was performed on skin cells 12 days later. Flow cytometry analysis was performed to validate results. RESULTS: Sequencing identified 7 nonhematopoietic and 6 hematopoietic cell subsets in EC-sensitized mouse skin. OVA sensitization resulted in the expansion in the skin of T cells, dendritic cells, macrophages, mast cells/basophils, fibroblasts, and myocytes cell clusters, and in upregulation of TH2 cytokine gene expression in CD4+ T cells and mast cells/basophils. Genes differentially expressed in OVA-sensitized skin included genes important for inflammation in dendritic cells and macrophages, collagen deposition, and leukocyte migration in fibroblasts, chemotaxis in endothelial cells and skin barrier integrity, and differentiation in KCs-findings that recapitulate those in AD skin lesions. Unexpectedly, mast cells/basophils, rather than T cells, were the major source of Il4 and ll13 in OVA-sensitized mouse skin. In addition, our results suggest novel pathways in fibroblast and endothelial cells that may contribute to allergic skin inflammation. CONCLUSION: The gene expression profile of single cells in mouse skin undergoing antigen-driven shares many features with that in AD skin lesions and unveils novel pathways that may be involved in allergic skin inflammation.


Assuntos
Dermatite Atópica , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Pele , Células Th2 , Transcriptoma
11.
Ann Clin Transl Neurol ; 9(2): 193-205, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076175

RESUMO

OBJECTIVES: Cerebral palsy (CP) is the most common childhood motor disability, yet its link to single-gene disorders is under-characterized. To explore the genetic landscape of CP, we conducted whole exome sequencing (WES) in a cohort of patients with CP. METHODS: We performed comprehensive phenotyping and WES on a prospective cohort of individuals with cryptogenic CP (who meet criteria for CP; have no risk factors), non-cryptogenic CP (who meet criteria for CP; have at least one risk factor), and CP masqueraders (who could be diagnosed with CP, but have regression/progressive symptoms). We characterized motor phenotypes, ascertained medical comorbidities, and classified brain MRIs. We analyzed WES data using an institutional pipeline. RESULTS: We included 50 probands in this analysis (20 females, 30 males). Twenty-four had cryptogenic CP, 20 had non-cryptogenic CP, five had CP masquerader classification, and one had unknown classification. Hypotonic-ataxic subtype showed a difference in prevalence across the classification groups (p = 0.01). Twenty-six percent of participants (13/50) had a pathogenic/likely pathogenic variant in 13 unique genes (ECHS1, SATB2, ZMYM2, ADAT3, COL4A1, THOC2, SLC16A2, SPAST, POLR2A, GNAO1, PDHX, ACADM, ATL1), including one patient with two genetic disorders (ACADM, PDHX) and two patients with a SPAST-related disorder. The CP masquerader category had the highest diagnostic yield (n = 3/5, 60%), followed by the cryptogenic CP category (n = 7/24, 29%). Fifteen percent of patients with non-cryptogenic CP (n = 3/20) had a Mendelian disorder on WES. INTERPRETATION: WES demonstrated a significant prevalence of Mendelian disorders in individuals clinically diagnosed with CP, including in individuals with known CP risk factors.


Assuntos
Paralisia Cerebral/genética , Sequenciamento do Exoma , Predisposição Genética para Doença/genética , Adolescente , Paralisia Cerebral/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino
12.
Am J Hematol ; 97(1): 18-29, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34677878

RESUMO

Septins play key roles in mammalian cell division and cytokinesis but have not previously been implicated in a germline human disorder. A male infant with severe neutropenia and progressive dysmyelopoiesis with tetraploid myeloid precursors was identified. No known genetic etiologies for neutropenia or bone marrow failure were found. However, next-generation sequencing of germline samples from the patient revealed a novel, de novo germline stop-loss mutation in the X-linked gene SEPT6 that resulted in reduced SEPT6 staining in bone marrow granulocyte precursors and megakaryocytes. Patient skin fibroblast-derived induced pluripotent stem cells (iPSCs) produced reduced myeloid colonies, particularly of the granulocyte lineage. CRISPR/Cas9 knock-in of the patient's mutation or complete knock-out of SEPT6 was not tolerated in non-patient-derived iPSCs or human myeloid cell lines, but SEPT6 knock-out was successful in an erythroid cell line and resulting clones revealed a propensity to multinucleation. In silico analysis predicts that the mutated protein hinders the dimerization of SEPT6 coiled-coils in both parallel and antiparallel arrangements, which could in turn impair filament formation. These data demonstrate a critical role for SEPT6 in chromosomal segregation in myeloid progenitors that can account for the unusual predisposition to aneuploidy and dysmyelopoiesis.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação em Linhagem Germinativa , Síndromes Mielodisplásicas/genética , Neutropenia/congênito , Septinas/genética , Linhagem Celular , Células Cultivadas , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Humanos , Recém-Nascido , Masculino , Síndromes Mielodisplásicas/complicações , Neutropenia/complicações , Neutropenia/genética , Tetraploidia
14.
HGG Adv ; 2(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34514437

RESUMO

Effective genetic diagnosis requires the correlation of genetic variant data with detailed phenotypic information. However, manual encoding of clinical data into machine-readable forms is laborious and subject to observer bias. Natural language processing (NLP) of electronic health records has great potential to enhance reproducibility at scale but suffers from idiosyncrasies in physician notes and other medical records. We developed methods to optimize NLP outputs for automated diagnosis. We filtered NLP-extracted Human Phenotype Ontology (HPO) terms to more closely resemble manually extracted terms and identified filter parameters across a three-dimensional space for optimal gene prioritization. We then developed a tiered pipeline that reduces manual effort by prioritizing smaller subsets of genes to consider for genetic diagnosis. Our filtering pipeline enabled NLP-based extraction of HPO terms to serve as a sufficient replacement for manual extraction in 92% of prospectively evaluated cases. In 75% of cases, the correct causal gene was ranked higher with our applied filters than without any filters. We describe a framework that can maximize the utility of NLP-based phenotype extraction for gene prioritization and diagnosis. The framework is implemented within a cloud-based modular architecture that can be deployed across health and research institutions.

15.
J Allergy Clin Immunol ; 148(3): 732-738.e1, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224783

RESUMO

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a pediatric complication of severe acute respiratory syndrome coronavirus 2 infection that is characterized by multiorgan inflammation and frequently by cardiovascular dysfunction. It occurs predominantly in otherwise healthy children. We previously reported haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1), a negative regulator of type I and II interferons, as a genetic risk factor for MIS-C. OBJECTIVES: We aimed to identify additional genetic mechanisms underlying susceptibility to severe acute respiratory syndrome coronavirus 2-associated MIS-C. METHODS: In a single-center, prospective cohort study, whole exome sequencing was performed on patients with MIS-C. The impact of candidate variants was tested by using patients' PBMCs obtained at least 7 months after recovery. RESULTS: We enrolled 18 patients with MIS-C (median age = 8 years; interquartile range = 5-12.25 years), of whom 89% had no conditions other than obesity. In 2 boys with no significant infection history, we identified and validated hemizygous deleterious defects in XIAP, encoding X-linked inhibitor of apoptosis, and CYBB, encoding cytochrome b-245, beta subunit. Including the previously reported SOCS1 haploinsufficiency, a genetic diagnosis was identified in 3 of 18 patients (17%). In contrast to patients with mild COVID-19, patients with defects in SOCS1, XIAP, or CYBB exhibit an inflammatory immune cell transcriptome with enrichment of differentially expressed genes in pathways downstream of IL-18, oncostatin M, and nuclear factor κB, even after recovery. CONCLUSIONS: Although inflammatory disorders are rare in the general population, our cohort of patients with MIS-C was enriched for monogenic susceptibility to inflammation. Our results support the use of next-generation sequencing in previously healthy children who develop MIS-C.


Assuntos
COVID-19/etiologia , COVID-19/metabolismo , Suscetibilidade a Doenças , Predisposição Genética para Doença , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Biomarcadores , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
16.
J Nutr ; 151(5): 1073-1083, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693820

RESUMO

BACKGROUND: Maternal iron deficiency (ID) is associated with poor pregnancy and fetal outcomes. The effect is thought to be mediated by the placenta but there is no comprehensive assessment of placental responses to maternal ID. Additionally, whether the influence of maternal ID on the placenta differs by fetal sex is unknown. OBJECTIVES: To identify gene and protein signatures of ID mouse placentas at mid-gestation. A secondary objective was to profile the expression of iron genes in mouse placentas across gestation. METHODS: We used a real-time PCR-based array to determine the mRNA expression of all known iron genes in mouse placentas at embryonic day (E) 12.5, E14.5, E16.5, and E19.5 (n = 3 placentas/time point). To determine the effect of maternal ID, we performed RNA sequencing and proteomics in male and female placentas from ID and iron-adequate mice at E12.5 (n = 8 dams/diet). RESULTS: In female placentas, 6 genes, including transferrin receptor (Tfrc) and solute carrier family 11 member 2, were significantly changed by maternal ID. An additional 154 genes were altered in male ID placentas. A proteomic analysis quantified 7662 proteins in the placenta. Proteins translated from iron-responsive element (IRE)-containing mRNA were altered in abundance; ferritin and ferroportin 1 decreased, while TFRC increased in ID placentas. Less than 4% of the significantly altered genes in ID placentas occurred both at the transcriptional and translational levels. CONCLUSIONS: Our data demonstrate that the impact of maternal ID on placental gene expression in mice is limited in scope and magnitude at mid-gestation. We provide strong evidence for IRE-based transcriptional and translational coordination of iron gene expression in the mouse placenta. Finally, we discover sexually dimorphic effects of maternal ID on placental gene expression, with more genes and pathways altered in male compared with female mouse placentas.


Assuntos
Anemia Ferropriva/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Proteoma/metabolismo , Transcriptoma/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Ferro/metabolismo , Ferro/farmacologia , Camundongos , Ferroproteínas não Heme/genética , Ferroproteínas não Heme/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Science ; 372(6541): 525-530, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33727252

RESUMO

Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.


Assuntos
SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , COVID-19/virologia , Microscopia Crioeletrônica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Receptores de Coronavírus/química , Receptores de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
18.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600347

RESUMO

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Assuntos
COVID-19/epidemiologia , Coleta de Dados/métodos , Registros Eletrônicos de Saúde , Coleta de Dados/normas , Humanos , Revisão da Pesquisa por Pares/normas , Editoração/normas , Reprodutibilidade dos Testes , SARS-CoV-2/isolamento & purificação
19.
Front Microbiol ; 12: 766612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975792

RESUMO

PrimPols are a class of primases that belong to the archaeo-eukaryotic primase (AEP) superfamily but have both primase and DNA polymerase activities. Replicative polymerase from NrS-1 phage (NrSPol) is a representative of the PrimPols. In this study, we identified key residues for the catalytic activity of NrSPol and found that a loop in NrSPol functionally replaces the zinc finger motif that is commonly found in other AEP family proteins. A helix bundle domain (HBD), conserved in the AEP superfamily, was recently reported to bind to the primase recognition site and to be crucial for initiation of primer synthesis. We found that NrSPol can recognize different primase recognition sites, and that the initiation site for primer synthesis is not stringent, suggesting that the HBD conformation is flexible. More importantly, we found that although the HBD-inactivating mutation impairs the primase activity of NrSPol, it significantly enhances the DNA polymerase activity, indicating that the HBD hinders the DNA polymerase activity. The conflict between the primase activity and the DNA polymerase activity in a single protein with the same catalytic domain may be one reason for why DNA polymerases are generally unable to synthesize DNA de novo.

20.
Front Microbiol ; 12: 838050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087509

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2021.766612.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...